Norwalk Tank Farm Update

Agenda

- Kinder Morgan Update
 - Remediation Systems Operations Summary
 - Completed Remediation Activities
 - Planned Remediation Activities

Summary of First-half 2017 Semiannual GW monitoring

Site Location and SFPP Remediation Areas

Site Location and SFPP Remediation Areas

Remediation Systems Operations Summary

Remediation Systems Operations Summary

- SVE and Biosparge Systems
 - 1st Quarter 2017
 - Did not operate during the first quarter due to SVE installation activitites
 - 2nd Quarter 2017
 - Operated 22% of time (97% excluding planned shutdowns)
 - SVE system was restarted on June 6, 2017.
 - Biosparge system was restarted on June 27, 2017.
- TFE/GWE System
 - 1st Quarter 2017
 - Operated 96% of time (100% excluding planned shutdowns)
 - 2nd Quarter 2017
 - Operated 89% of time (100% excluding planned shutdowns)
 - Shutdown was to facilitate gauging and sampling activities for the first semiannual groundwater sampling event.

SVE Systems Operations Summary

Equivalent Fuel Treated - SVE

- Based on weekly monitoring of influent vapor concentration, vapor extraction flow rate, and hours of operation.
- Conversion Factor = 6.6 lbs/gal
- 1st Quarter 2017 0 gallons (0 pounds)
- No mass removal due to downtime from RTO installation
- 2nd Quarter 2017 912 gallons (6,022 pounds)
- Low mass removal due to downtime from RTO installation
- Since 1995 Approx. 526,800 gallons (3.47 million pounds)

SVE System Operations Summary

Cumulative Fuel Removed by Vapor Extraction To Date

TFE/GWE System Operations Summary

Groundwater Extracted

- 1st Quarter 2017
 - South-Central and Southeast Areas 1,224,622 gallons
- 2nd Quarter 2017
 - South-Central and Southeast Areas 800,613 gallons
- Since 1995
 - South-Central and Southeast Areas— 100.7 million gallons
 - West Side Barrier 26.9 million gallons

TFE/GWE System Operations Summary

■ Equivalent Fuel Treated – TFE/GWE

- Based on monthly monitoring of influent TPH concentration and volume of extracted groundwater.
- Conversion Factor = 6.6 lbs/gal
- 1st Quarter 2017 1.5 gallons (9.6 lbs)
- 2nd Quarter 2017 11 gallons (73 lbs)
- Lower mass removal due to downtime from OWS system install and SVE demolition, and decreased TPH concentration in groundwater influent (due to biosparge activities)

TFE System Operations Summary

■ Free Product Extracted

- 1st Quarter 2017
 - 2-gallons of free product accumulated in the product holding tank
- 2nd Quarter 2017
 - No free product accumulated in the product holding tank
- Less product recovered due to decline in measurable product in extraction wells as a result of biosparge activities
- Since 1995 14,426 gallons product extracted

TFE/GWE System Operations Summary

Completed Remediation Activities

Horizontal Biosparge Well and SVP Array

Well Casing and Screen

- SCH 80 PVC 4-inch diameter well
- Open slot design (no sand pack required); slot width 0.010 inches
- Screen depth of 45 feet bgs
- 250 feet of riser casing; 600 feet of screen

Soil Vapor Monitoring Probe Network

- SVM-1 through SVM-16
- Double or Triple Nested (7, 15, 22 feet bgs)

Biosparge Pilot Study Conclusions

Tracer Testing

- Data supports zone of influence of ~50 feet on both sides of well
- Tracer gas reported in well PZ-2, located <u>200</u> feet away!

Soil Vapor Monitoring

- Highest VOCs during first few months of operation
- Vapor Intrusion (VI) risk in shallow media highest in onsite area closest to the biosparge well screen
- Offsite VI risk is minimal assuming continued operation of the SVE system

Groundwater Monitoring

- Average reduction in product thickness of 1 to 2 feet
- 100 percent reduction in 16 of 21 wells monitored
- Significant reduction in dissolved-phase hydrocarbons for wells primarily located within ~50 to 100 feet

Biosparge Pilot Study Conclusions

Recommendations

- Continued operation of the south-central system.
- Expansion of the biosparge system to the SE area of the site, which will include a second horizontal well scheduled to be installed in the third or fourth quarter of 2017.

Biosparge Restart

- Biosparge was restarted on June 27, 2017
- Air Flow increased in a step wise manner going from 200 SCFM and increasing weekly until air flow is up to 500 SCFM.
- Maximum VOC concentration during start up is >2000 ppmV (as hexane) in SVM-11 (15 feet and 21 feet bgs).
- Maximum VOC concentration a month after start up is 957ppmV (as hexane) in SVM-12 (22 feet bgs).
- VOC concentration (as hexane) into SVE system increased slightly from 220 ppmV to 580 ppmV at start up.

New Regenerative Thermal Oxidizer Unit

RTO Efficiency

RTO

- RTO was restarted on June 6, 2017
- New RTO showed a 99% destruction efficiency.
 - Total VOC Concentration (as hexane) decreased from 220 ppmV to 1.8 ppmV in June.
 - Total VOC Concentration (as hexane) decreased from 580 ppmV to 2.6 ppmV in July.
- RTO Operation Parameters
 - Average Airflow in June and July 2017 1,262 SCFM
 - Average Temperature in June and July 2017 1,618°F
 - Maximum Airflow 2,204 SCFM, below permitted flow 3,000 SCFM
 - Minimum Temperature 1,538°F, above permitted temperature of 1,500°F

36-Acre Investigation SVP Installation

- Five double nested soil vapor probes (5 and 10 feet bgs) were installed on August 3, 2017. (SVP-105 to SVP-109).
- Soil samples were collected on August 3, 2017.
- Soil vapor samples collected on August 17 and 18, 2017 while SVE and biosparge on.
- Soil vapor samples with the SVE and biosparge off is scheduled for October 2017.

Planned Remediation Activities

Biosparge Expansion Well

Biosparge Expansion Well in Southeastern Area (Q3 or Q4 2017)

- SCH 80 PVC 4-inch diameter well
- Screen depth of 45 feet bgs; open slot design (no sand pack required)
- 500 feet of riser casing; 250 feet of screen
- New, larger air compressor (Kaeser 175HP) will be installed in 2018 to run the SE biosparge well and possible additional offsite biosparge well.

LNAPL Mobility Evaluation – Conceptual Site Model

- Previous CSM prepared for the site in 2013.
- CSM incorporated CPT-LIF borings, gauging data, pore fluid saturation tests, stepped free product mobility (laboratory) tests, in-situ free product mobility (field) tests, and dissolved phase extent.
- Three dimensional extent of LNAPL using gauging and LIF data identified
- Laboratory tests indicate LNAPL had very low mobility
- Baildown tests show mostly low mobility with higher mobility at one location

LNAPL Mobility Evaluation – Conceptual Site Model

- What, if any, effect did historic rainfall in southern California during winter 2016/2017 have on LNAPL extent, mobility, and overall risk?
- CH2M is currently evaluating the CSM to answer this question, focusing primarily on:
 - Hydrographs/Stratigraphy
 - Precipitation Data
 - Dissolved Phase Trends
 - Statistical Tools (e.g., diagnostic gauge plots, which are tool that can be used to determine whether LNAPL is unconfined, confined, or perched)

LNAPL Mobility Evaluation – Preliminary Findings

- Water levels in wells as a response to heavy winter rain only went up a marginal amount, and not enough to reverse the overall decreasing trend of the past 8-12 years (in fact barely enough to stop the overall decline).
- Initial analysis suggests potentially up to half of wells analyzed exhibit some degree of perching conditions, which results in exaggerated in-well NAPL thickness measurements.

LNAPL Mobility Evaluation – Preliminary Findings (Typical Hydrograph)

LNAPL Mobility Evaluation – Preliminary Findings

- Large fluctuations in LNAPL thickness may be observed as water table fluctuates near perching interface in some wells
- Therefore, the distribution of LNAPL <u>in the well</u> may change as a result of rising/lowering water table, but the mobility <u>in the</u> <u>formation</u> is unlikely to be affected, absent any new releases.
- Tech memo summarizing the CSM update to be published in September.

Summary of First-half 2017 Semiannual Groundwater Monitoring

First Semiannual 2017 Groundwater Monitoring Report

- Site-wide monitoring in April 2017 both KMEP and DLA
- Well Gauging (Blaine Tech and SGI)
 - 167 wells gauged
- Well Sampling (Blaine Tech and SGI)
 - Low-flow sampling methods (submersible pumps)
 - 116 wells sampled (split samples collected in EXP-1, EXP-2, and EXP-3)
 - SFPP and DLA remediation systems remained offline during gauging activities

First Semiannual 2017 Groundwater Monitoring Report

- Uppermost Aquifer Groundwater Elevations and Flow
 - Groundwater elevations increased over most of the site, but decreased in the western portion of the site and offsite to the west compared to April 2016
 - Unlike past events, there was a lack of converging flow toward the site
 - Horizontal hydraulic gradient of 0.0011 to 0.0021 ft/ft with overall flow direction to the northwest
- Exposition Aquifer Groundwater Elevations and Flow
 - Groundwater elevations were generally lower than those reported for April 2016
 - Horizontal hydraulic gradient was approximately 0.0003 ft/ft to the east-northeast, similar to the historical flow direction

Groundwater Elevations - Water Table

Groundwater Elevations - Exposition

First Semiannual 2017 Groundwater Monitoring Report

- Free product measured in in 18 of the 167 wells that were gauged.
 - North-central area: GMW-7, GMW-45, PZ-3, TF-16, RTF-18-E, RTF-18-W, and RTF-18-NW
 - Eastern area: GMW-62 and GMW-68
 - South-central area: GMW-23, GMW-24, GMW-29, GMW-30, GMW-O-11, GMW-O-12, and MW-O-2
 - Southeastern area: GMW-O-15 and GMW-O-18
 - Thicknesses ranged from 0.01 foot in PZ-3 to 4.2 feet in GMW-O-12
- Decrease in product thickness and areal extent is likely a result of increased precipitation during the winter and biosparging in the south-central area.

LNAPL Extent – 1998 to 2017

First Semiannual 2017 Groundwater Monitoring Report

Uppermost Aquifer Wells

- In most areas, the lateral extents of TPH, benzene, 1-2-DCA, MTBE, and TBA have been reduced from the historical maximum and appear to be consistent with previous monitoring events
- Reduction and consistency of plumes is a result of hydraulic containment by the treatment systems and attenuation mechanisms
- Free product accumulation in several remediation and monitoring wells declined in magnitude and extent due to increased precipitation and biosparge operations in the south-central area
- Low level detections of MTBE and 1,2-DCA and plume extents in the western area do not warrant restarting the WSB treatment system.

First Semiannual 2017 Groundwater Monitoring Report

- Exposition Aquifer wells sampled:
 - EXP-1, -2, and -3 sampled twice by DLA and SFPP
 - EXP-4 sampled once by SFPP
 - EXP-5 sampled once by SFPP
- All analytical results were Non Detect (ND), except for the following:
 - MTBE was detected at EXP-1 in the SFPP split sample at a concentration of 0.81 µg/L, near the laboratory reporting limit
- This type of low-level detection occasionally occurs in the EXP wells. SFPP and DLA Energy will continue to monitor the EXP wells and closely watch for any future potential detections.

TPH

Benzene

1,2-DCA

MTBE

TBA

Time Series

Questions